indicates that the trends revealed in the total annual unimpaired Sacramento River flow (middle panel) are also evident in the total annual precipitation at Quincy (top panel) and the total annual unimpaired San Joaquin River flow (bottom panel). Alternating periods of wet and dry conditions are evident in both river basins. These data indicate there were wetter than normal conditions in the late 1800's and early 1900's, followed by severe dry conditions in the 1920's and 1930's. These were then followed by generally wetter conditions until the mid-1970's. Figure 3-1 – Total annual precipitation and unimpaired flow in the upper Sacramento and San Joaquin River basins (1872-2009) Total annual precipitation at Quincy in the northeastern Sierra (top panel), total annual unimpaired Sacramento River flow (middle panel), and total annual unimpaired San Joaquin River flow (bottom panel). Bar color on each panel indicates the regional location of the measurements, reflected in the remaining figures of this section (Figure 3-2, Figure 3-3, and Figure 3-4). Grey line within each panel is the 10-year moving average for each parameter. Figure 3-2 – Locations of Precipitation and Runoff Measurements Location of stations used in the determination of the 8-station precipitation index for northern California (left map), including the location of Quincy (QRD), and the unimpaired Sacramento River flow (red stations, right map) and unimpaired San Joaquin River flow (orange stations, right map). Knowles (2000) illustrated that the seasonal timing of runoff can significantly alter salinity intrusion without any change to the total annual runoff. For this reason, it is critical to examine the monthly variability in precipitation and unimpaired runoff. Monthly precipitation and unimpaired flow values are available for a shorter time period (generally 1921 to present) than the total annual values (generally 1870's to present). The monthly distribution of the Sacramento eight-station precipitation index ¹⁰ indicates that most of the precipitation in northern California occurs during November through March (Figure 3-3). The variability between years, represented by the vertical bars and '+' marks, shows the distribution is positively skewed, i.e., excessively high precipitation occurs in relatively few years. Figure 3-4 presents the monthly distribution of unimpaired flow for both the Sacramento and San Joaquin River basins. River flow lags precipitation by about two months because of storage of some precipitation in the form of snow and subsequent snowmelt in the spring. Most of the unimpaired inflow to the Delta originates from the Sacramento Basin, although the contributions from the two basins are approximately the same during the months of latespring and early-summer snow melt, when unimpaired runoff from the San Joaquin Basin peaks. ¹⁰ Data from 1921 through 2008, downloaded from http://cdec.water.ca.gov/cgi-progs/precip1/8STATIONHIST Figure 3-3 – Monthly Distribution of Precipitation in the Sacramento River Basin Distribution of monthly precipitation for water years 1921 through 2008. Monthly averages are indicated by the blue line with black circles. Monthly median is given by the blue squares, while the interquartile range is indicated by the vertical blue line for each month and the vertical grey line extends to the 10th and 90th percentiles. Maximum and minimum values are indicated by '+' marks. Figure 3-4 – Monthly distribution of unimpaired flow in the Sacramento and San Joaquin River basins Distribution of monthly unimpaired flows for water years 1921 through 2008. Monthly averages are indicated by the lines with black circles. Monthly median is given by the squares, while the interquartile range is indicated by the vertical line for each month and the vertical grey line extends to the 10th and 90th percentiles. Maximum and minimum values are indicated by '+' marks. ### **Conclusions** The long-term observations of precipitation and unimpaired flow indicate: - Relatively wet conditions occurred in the late 1880's to about 1917 in both the Sacramento and San Joaquin River watersheds prior to large-scale water management operations. - Unusually dry conditions occurred from about 1918 through the late 1930's; these persistent dry conditions are not representative of the average conditions over the last 130 years. - Precipitation in Sacramento River watershed peaks between December and March; the unimpaired river flow lags by about 1 to 2 months because of snow melt. February 12, 2010 Exhibit CCWD-6 23 #### 3.2. Net Delta Outflow The quantity of water flowing from the Delta into Suisun Bay, defined as Net Delta Outflow (NDO), is the primary factor in determining salinity intrusion in Suisun Bay and the western Delta. Unimpaired NDO is calculated using unimpaired flow in the Sacramento and San Joaquin Rivers (Section 3.1) as well as contributions from other minor tributaries. ¹¹ Unimpaired NDO is the hypothetical Delta outflow that would occur in the absence of any upstream diversion or storage, but with the existing Delta channel and upstream channel configuration. Because the outflow from the Delta at the wide and deep entrance to Suisun Bay cannot be measured accurately, the parameter of historical (actual) NDO is estimated from a daily mass balance of the measured river inflows to the Delta, measurements of water diversions at major pumping plants in the Delta, and estimates of net within-Delta consumptive use (including Delta precipitation and evaporation). The effect of anthropogenic water management on NDO is illustrated below by comparing monthly estimates of unimpaired NDO¹² and historical (actual) NDO¹³ (Figure 3-5). Since unimpaired flow estimates also assume the existing Central Valley and Delta landscape (reclaimed islands, no natural upstream flood storage, current channel configuration, etc.), this comparison reveals the net effect of water management only. This analysis does not address the change due to physical modification to the landscape or sea level rise. For the period of joint record, when both unimpaired and historical NDO values are available (water year 1930 through 2003), historical NDO decreased even though unimpaired NDO increased slightly. The long-term (74-year) linear trend in monthly unimpaired NDO (the black dashed line in top panel of Figure 3-5) increased on average 0.49 MAF/month; thus, by 2003, the average annual unimpaired NDO had increased 5.9 MAF/year since 1930. In contrast, the long-term linear trend in monthly historical NDO (the black dashed line in middle panel of Figure 3-5) decreased on average -0.29 MAF/month, totaling a decrease in historical (actual) NDO of -3.5 MAF/year. This corresponds to a net increase in diversion of 9.4 MAF/year of water from the Delta upstream watershed relative to the 1930 level 14. Increased diversion and export of water have decreased historical NDO (middle panel of Figure 3-5), but this has been partially offset by a natural increase in unimpaired NDO (top panel). The difference between historical and unimpaired NDO (bottom panel) is due to the cumulative effects of upstream diversions, reservoir operations, in-Delta diversions, and Exhibit CCWD-6 February 12, 2010 Unimpaired NDO does not include water imported from the Trinity River system, which is outside the Delta watershed. ¹² Unimpaired NDO data was obtained from Ejeta (2009), which is an updated version of DWR (1987). Historical NDO data was obtained from the IEP's DAYFLOW program (http://www.iep.ca.gov/dayflow/index.html). This is consistent with current estimates of approximately 15 MAF/year total diversion from the system, which includes the 4-5 MAF/year diversions established prior to 1930 and approximately 1 MAF/year additional water supply imported from the Trinity River system. south-of-Delta exports. During most months, water management practices have historically resulted in historical (actual) NDO that is less than unimpaired conditions, indicated by a negative value for the quantity (historical NDO – unimpaired NDO). Because the difference between monthly historical and unimpaired NDO has become more negative over time, the periods of excess conditions (when historical NDO exceeds unimpaired NDO) have become very infrequent. The only occurrences are now following the wettest years, primarily due to releases from reservoirs in the fall to make room for winter flood control storage. Figure 3-5 – Time series of Monthly Net Delta Outflow under unimpaired conditions and historical (actual) conditions The thin color line on each panel indicates the monthly NDO, the thick color line indicates a running 5-year average of the monthly NDO, and the dashed black line indicates the linear long-term trend. The monthly distribution (Figure 3-6) of unimpaired NDO and historical NDO for water years 1930 to 2003 reveals that for all months except September and October (when NDO is low), average unimpaired NDO is greater than average monthly historical NDO. The tendency in the average historical NDO toward greater flow in September and October is influenced strongly by the period prior to about 1975 when reservoir operations resulted in more flow in those months (see Figure 3-7 and related discussion below). On average from 1930-2003, water management practices reduced Delta outflows in the months of November through August (and in all months since about 1975, see Figure 3-7). The greatest reduction in Delta outflow relative to unimpaired conditions occurs in the months of March through June, when spring snow melt is captured in reservoirs and a portion of the river flow is diverted for direct use. As also shown in Figure 3-6, water management practices also shift the peak flow periods to earlier in the year. The unimpaired NDO hydrograph peaks in May when snow melt contributes to high river flows, with at least 4.1 MAF in May
in 50% of the years (averaging 4.2 MAF in May over all years). The historical NDO peaks in February with at least 2.9 MAF/month in 50% of the years (averaging 3.7 MAF/month over all years). The variability between years, represented by the vertical bars and '+' marks, indicates the distribution is positively skewed, which means a relatively few years have excessively high flows. Figure 3-6 – Monthly distribution of Net Delta Outflow Distribution of monthly NDO for water years 1930 through 2008. Monthly averages are indicated by the lines with black circles. Monthly median is given by the squares, while the interquartile range is indicated by the vertical line for each month and the vertical grey line extends to the 10th and 90th percentiles. Maximum and minimum values are indicated by '+' marks. Figure 3-7 shows the long-term trends in the difference between historical (actual) monthly NDO and unimpaired monthly NDO. Increased water usage and increased diversion of water to storage has reduced historical NDO relative to unimpaired NDO in most months of the year. In July (and August, not shown in Figure 3-7), the deficit is reduced, likely due to reservoir releases which provide a portion of the water diverted by upstream users prior to reservoir construction. The 1994 Bay-Delta Accord called for higher minimum Delta outflows in July and August to protect Delta fish species, which should also serve to reduce the deficit. However, historical (actual) NDO still remains less than unimpaired NDO. In September (and October, not shown in Figure 3-7), historical (actual) NDO exceeded unimpaired NDO from about 1945 to 1975, with an increasing trend in the percent change. Since 1975, the percent change has shown a downward trend with a deficit (historical NDO less than unimpaired NDO) during most years since 1975. Figure 3-7 – Long-term trends in monthly NDO Percent change of NDO relative to unimpaired conditions. Circles indicate the percent change for each month of the period of record. The red line indicates a moving 5-year average of the percent change, while the black line indicates the long-term linear trend over the entire period of record. #### **Conclusions** Anthropogenic water management practices have altered NDO in the following ways: - Long-term data demonstrate that the difference between historical (actual) NDO and unimpaired NDO is increasing over time, indicating that water management actions have reduced Delta outflow significantly. - During most months, water management practices have reduced Delta outflow relative to unimpaired conditions. From the mid-1940's to the mid-1980's, reservoir operations resulted in historical (actual) NDO slightly greater than unimpaired NDO slightly in a number of months, largely in the fall. However, since 1985, reservoir operations have resulted in increased NDO only in the wettest years, and NDO has declined in all other months. - On average, water management practices have resulted in reduced Delta outflows in all months except September and October. The greatest reduction in Delta outflow relative to unimpaired conditions occurs in the months of March through June, when spring snow melt is captured in reservoirs and some of the remaining river flows are diverted for direct use. 28 Exhibit CCWD-6 February 12, 2010 ## 3.3. Salinity in the Western Delta and Suisun Bay Observations and model-based estimates can be used to examine historical variations in salinity in the western Delta and Suisun Bay. The observations examined in this section include records from the early 1900's from the California & Hawaiian Sugar Refining Corporation in Crockett (C&H) and long-term monitoring data published online by the Interagency Ecological Program (IEP). Estimates of salinity intrusion were obtained using the Kimmerer-Monismith equation describing X2 (Kimmerer and Monismith, 1992). Section 3.3.1 addresses the importance of consistency among salinity comparisons. The spatial variability of a specific salinity level is examined in Section 3.3.2 and Section 3.3.3, while the temporal variability of salinity at specific fixed locations is explored in Section 3.3.4 and Section 3.3.5. ## 3.3.1. Importance of Consistency among Salinity Comparisons Water salinity in this report is specified either as electrical conductivity (EC) or as a concentration of chloride in water. EC is a measure of the ability of an aqueous solution to carry an electric current and is expressed in units of microSiemens per centimeter (µS/cm)¹⁵. Chloride concentration is specified in units of milligrams of chloride per liter of water (mg/L). Conversion between EC and chloride concentration can be accomplished using site-specific empirical relationships such as those developed by Kamyar Guivetchi (DWR, 1986). Previous studies have evaluated the level of salinity in the Bay and Delta, using a variety of salinity units (e.g. EC, chloride concentration, or concentration of total dissolved solids in water) and various salinity parameters (e.g. annual maximum location 1,000 μ S/cm EC, monthly average location of 50 mg/L chloride, or daily average EC at a specific location). Therefore, when comparing studies, it is critical to use consistent salinity units, parameters, and timing, including the phase of tide and time of year. These concepts are discussed further in Appendix D. #### 3.3.2. Distance to Fresh Water from Crockett The California & Hawaiian Sugar Refining Corporation (C&H) is located in Crockett, near the western boundary of Suisun Bay (see Figure 3-8). C&H either obtained its freshwater supply in Crockett, or, when fresh water was not available at Crockett, from barges that traveled upstream on the Sacramento and San Joaquin Rivers. The barges generally travelled upstream twice a day beginning in 1908 (DPW, 1931). C&H recorded both the distance traveled by its barges to reach fresh water and the quality of the water they obtained. This provides the most detailed quantitative salinity record available prior to the initiation of salinity monitoring by the State of California in 1920. The distance traveled by the C&H barges serves as a surrogate for the prevailing salinity conditions in the western Delta and February 12, 2010 Exhibit CCWD-6 29 ¹⁵ The reported EC values are actually specific conductance, i.e., the electrical conductivity of the water solution at a reference temperature of 25° centigrade, as is standard practice. Suisun Bay. Operations by C&H required water with less than 50 mg/L chloride concentration. ¹⁶ Additional detail on C&H operations and the detailed barge travel data are included in Appendix D. Figure 3-8 – Map of Suisun Bay and Western Delta with locations of continuous monitoring stations C&H barges traveled up estuary from Crockett (yellow star). Locations of IEP continuous monitoring stations are shown in red. Scale in miles is indicated in the upper left corner of the map. ¹⁶ In comparison, the 50 mg/L concentration required for C&H operations is one-third the concentration of the industrial water quality standard under current conditions in the Delta. Figure 3-9 – Distance to fresh water from Crockett "Distance to fresh water" is defined as the distance in miles upstream of Crockett to water with less than 50 mg/L chloride concentration. The horizontal line, at approximately 18 miles, is the distance from Crockett to the Delta. The shading represents the spatial extent and duration of the presence of fresh water within Suisun Bay, downstream of the Delta. Data notes: (1) During August and September 1918, average water quality obtained by C&H exceeded 110 mg/L chlorides; (2) Salinity during 1966 is likely an overestimate due to relatively sparse spatial coverage of IEP monitoring stations. During 1966, salinity at Emmaton (28 miles from Crockett) exceeded 3,000 μ S/cm; the nearest station upstream of Emmaton is near Courtland (58 miles from Crockett) and had a salinity of ~ 300 μ S/cm. Location of 350 μ S/cm isohaline based on data interpolation between these two stations (which are 30 miles apart) is not likely to be representative of the true location. Figure 3-9 compares surface 17 salinity data from C&H with estimates derived from a network of continuous surface salinity monitoring stations (Figure 3-8) within Suisun Bay and the western Delta dating back to 1964. The monitoring data are published online by the Interagency Ecological Program (IEP, see http://iep.water.ca.gov/dss). The location of the 350 μ S/cm EC isohaline, which approximately coincides with the C&H criterion of 50 mg/L chloride concentration, was estimated from the IEP measurements by linear interpolation between the average daily values at IEP monitoring stations. ¹⁷ Due to the method of collection, C&H water samples are assumed to be from near the water surface. As a cautionary note, depending on the source of information, the C&H barges are said to have traveled with the tide, indicating they either took water at high tide (moving up river on the flood and down on the ebb) or at low tide (traveling against the tide, but moving a shorter distance). Thus, the C&H records either represent the daily maximum or daily minimum distance traveled. In contrast, the distances to fresh water calculated from recent monitoring data are based on the average daily values of EC measured at fixed locations. The difference between daily average distance and daily minimum or maximum is approximately 2 to 3 miles. However, since the difference between the data from the early 1900's and the more recent time periods exceed this 2 to 3 mile uncertainty, the conclusions of this section remain unchanged regardless of the specific barge travel timing. From 1908 through 1918, C&H was able to collect fresh water for a large portion of the year within Suisun Bay, without having to travel all the way from Crockett to the Delta. However, as can be seen in Figure 3-9, that would
no longer be possible in many years (e.g., 2001-2004). Figure 3-10 shows the monthly distribution of distance traveled by C&H barges during water years 1908 through 1917, and the equivalent distance from determined from observed data for water years 1966 through 1975 (top panel) and water years 1995 through 2004 (bottom panel). These two latter periods have similar hydrologic characteristics to the period of the C&H data. The monthly distribution for each dataset illustrates the seasonal fluctuations of the salt field as well as the variability between years for each month. During the early 1900's, the median distance traveled by C&H barges to procure fresh water was less than 8 miles in the spring (March-June) and about 25 miles (between Collinsville and Emmaton) in the fall (September-October). In contrast, due to water management conditions from 1995 to 2005, the equivalent distances would be 13 to 23 miles in the spring and up to 30 miles in the fall. It is worth noting that from 1966 to 1977, the distance to fresh water in the fall and early winter months (September through January) was generally less than the equivalent distance in the early 1900's, indicating that large-scale water management operations circa 1970 tended to reduce salinity in the fall and early winter. However, this trend has reversed in the more recent water management period (1995-2005), with salinity intrusion significantly increased over levels in the early 1900's during all months. Figure 3-10 also shows that the range of the average annual distance from Crockett to fresh water from 1995 to 2005 was approximately 15 miles (from about 13 to 30 miles), while the range during the early 1900's was approximately 20 miles (from 6 to 25 miles). This analysis indicates that large-scale water management activities limit the fluctuating nature of the salt field by preventing fresh water from reaching as far downstream as it did in the early 1900's. Finally, Figure 3-10 indicates that salinity intrusion in the Delta occurred later in the year (beginning in July) in the early 1900's than under more recent time period conditions (beginning in March). 32 Exhibit CCWD-6 February 12, 2010 This similarity in hydrological characteristics between the periods was established by approximately matching the distribution of annual Sacramento River flow during these periods (see Appendix E). Figure 3-10 - Monthly distribution of distance to fresh water from Crockett These comparisons (and other relevant comparisons in Appendix D) show that, on average, C&H barges would have had to travel up to 19 miles farther to procure fresh water under recent large-scale water management conditions than in the early 1900's. These comparisons also indicate that fresh water was present for significantly longer time periods, and over a larger area of the western Delta, in the early 1900's than during similar hydrological periods under current water management conditions. Abrupt changes in salinity just prior to 1920 caused C&H to abandon the Sacramento and San Joaquin Rivers and switch to a water supply contract with Marin County beginning in 1920 (Appendix D). The distance to fresh water during individual wet years and during individual dry years is presented in Appendix D. The data in Appendix D also show that salinity has been generally higher in recent times than in the early 1900's and that water management has restricted the range in salinity experienced during a water year. The periods when fresh water is present at given locations have been reduced, or, in some cases, eliminated. #### **Conclusions** The records of the distance traveled upstream from Crockett by C&H barges to procure fresh water and estimates of this distance under large-scale water management conditions (reservoir operations and water diversions) show that: - Fresh water was present farther downstream and persisted for longer periods of time in the western Delta in the early 1900's than under recent time periods with similar hydrologic conditions; - Water management practices result in greater salinity intrusion in the western Delta for most months of the year; and, - Salinity intrusion begins earlier in the year, extends farther upstream, and persists for a longer period each year. #### 3.3.3. X2 Variability An often-used indicator of fresh water availability and fish habitat conditions in the Delta is a metric called X2. X2 is defined as the distance from the Golden Gate to the 2 part-per-thousand isohaline (equivalent to a salinity of 2 grams of salt per kilogram of water), measured near the channel bed along the axis of the San Francisco Estuary. Higher values of X2 indicate greater salinity intrusion. Monthly values of X2 are estimated in this report using the monthly regression equation from Kimmerer and Monismith (1992): Monthly $$X2(t) = 122.2 + 0.3278*X2(t-1) - 17.65*log_{10}(NDO(t))$$ The K-M equation expresses X2 (in units of kilometers) in terms of Net Delta Outflow (NDO, see Section 3.2) during the current month and the X2 value from the previous month. The monthly K-M equation was based on a statistical regression of X2 values (interpolated from EC measurements at fixed locations) and estimates of NDO from IEP's DAYFLOW computer program. Hence, the K-M equation is only valid for the existing Delta channel configuration and existing sea level conditions. The K-M equation can be used to transform unimpaired and historical NDO data into the corresponding X2 values for unimpaired (without reservoir operations or water diversions) and historical (with historical water management) conditions, respectively. The seasonal and annual variations of X2 are dependent on the corresponding variations of NDO under both historical and unimpaired flow conditions (Figure 3-11). X2 under historical flow conditions is shifted landward relative to unimpaired conditions by approximately 5 km. During the 1930's, historical NDO was often negative, sometimes averaging approximately -3,000 cfs for several months. This was due to relatively low runoff and significant upstream water diversions. Unfortunately, the K-M equation, which includes the logarithm (base 10) of NDO, is unable to account for negative values of NDO. In the case of historical flow conditions, this results in high variability of X2 in the 1930's. The values of X2 under historical flow conditions during 1930's in Figure 3-11 are likely underestimated. Figure 3-12 compares X2 under unimpaired and historical conditions for the period from 1945-2003, following initiation of the Central Valley Project (i.e., after the completion of the Shasta Reservoir of the CVP). Figure 3-12 shows that, compared to unimpaired conditions, X2 under historical conditions was higher by about 10 km during April-July and by about 5 km during the rest of the year. Salinity intrusion under historical water management conditions is, therefore, greater (higher X2) than the intrusion that would occur under unimpaired conditions. Moreover, the switch from declining X2 values during fall and winter months to increasing X2 values (increasing salinity intrusion) occurs in March under historical water management conditions and in June under unimpaired conditions. Thus, recent water management practices have resulted in a saltier Delta with earlier occurrence of salinity intrusion in the year. February 12, 2010 Exhibit CCWD-6 35 Although current water management practices operate to provide salinity control, both the extent and duration of salinity intrusion are greater under current water management practices than under historical conditions. Likewise, current water management practices have changed the overall annual range in salinity (i.e., the difference between the highest and lowest salinity values during the year). Figure 3-11 – Location of X2 under unimpaired and historical conditions X2 has a strong seasonal and decadal variability under both unimpaired (top panel) and historical (middle panel) flow conditions reflecting the strong seasonal and decadal variability of NDO. The difference between historical and unimpaired conditions (bottom panel) illustrates the net effect of water management activities. Figure 3-12 - Monthly distribution of X2 from 1945 through 2003 Figure 3-13 presents a comparison of unimpaired X2 and historical X2 during the 10 driest and the 10 wettest years of the CVP period (1945-2006). During dry years (top panel), X2 is substantially greater under historical water management conditions than under unimpaired conditions (i.e., without water management); these effects are less dramatic but still occur during the wet years (bottom panel). Additionally, the annual range in salinity variability is significantly reduced under dry conditions (from approximately 22 km with unimpaired flows to 14 km with historical flows), but not wet conditions. The result of water management practices is a saltier Delta during both wet and dry years, with the greatest amount of salinity intrusion and reduced seasonal variability occurring in dry years. #### **Conclusions** The analysis of X2 (a measure of salinity intrusion in the Delta) shows that: - Water management practices (reservoir operations and water diversions) result in a saltier Delta, with earlier salinity intrusion in the year. - Water management practices result in a saltier Delta during both wet and dry years, but the effect is more pronounced in the dry years when the seasonal variability of salinity is also significantly reduced. February 12, 2010 Exhibit CCWD-6 37 Determination of the ten wettest and driest years is based on the total annual unimpaired Net Delta Outflow. The ten wettest years are 1952, 1956, 1958, 1969, 1974, 1982, 1983, 1986, 1995, and 1998. The ten driest years are 1947, 1976, 1977, 1987, 1988, 1990, 1991, 1992, 1994, and 2001. Figure 3-13 – Monthly X2 variability during wet and dry years (1945-2003) Determination of the ten wettest and driest years is based on the total annual
unimpaired Net Delta Outflow. The ten wettest years are 1952, 1956, 1958, 1969, 1974, 1982, 1983, 1986, 1995, and 1998. The ten driest years are 1947, 1976, 1977, 1987, 1988, 1990, 1991, 1992, 1994, and 2001. ## 3.3.4. Salinity at Collinsville Collinsville, near the confluence of the Sacramento and San Joaquin Rivers, was one of the first long-term sampling locations implemented by the State of California. The Suisun Marsh Branch²⁰ of the DWR estimated monthly average salinity at Collinsville for the period 1920-2002, using a combination of 4-day TDS (total dissolved solids) grab samples from 1920-1971 and EC measurements from 1966-2002. Data from the overlap period of 5 years between the TDS grab samples and EC measurements were used in a statistical regression model, and the monthly averaged 4-day TDS samples were converted to monthly average EC (Enright, 2004). The result of this regression analysis was a time series of monthly EC values at Collinsville for the period of 1920-2002. Figure 3-14 – Observed salinity at Collinsville Monthly average salinity at Collinsville (black dots and black line), with the 12-month running average (red line) and 5-year running average (blue line). Figure 3-14 shows the monthly average salinity at Collinsville for the period of 1920-2002, and Figure 3-15 shows the long-term trends in monthly salinity at Collinsville. Although the maximum values of salinity in the 1920's and 1930's far exceed subsequent salinity measurements at Collinsville, during the winters and springs of the 1920's and 1930's, the water at Collinsville freshened considerably. During the dry periods of 1920's and 1930's, monthly average salinity was below 350 μ S/cm EC (approximately 50 mg/L chloride) for at least one month in every year. The one exception is 1924 which is inconclusive because no data were available from November through March. Monthly average EC data are missing for a portion of the winters and springs prior to 1926, and data for 1943 are missing entirely. ²⁰ Data provided by Chris Enright (DWR), personal communication, 2007. Figure 3-15 – Year-to-year trends in monthly-average salinity at Collinsville, 1920-2002 Monthly average salinity at Collinsville (black dots), with the 12-month running average (red line) and 5-year running average (blue line) for individual months. Relatively fresh winters and springs during the 1920's are consistent with observations by C&H during that time period. However, monthly EC at Collinsville during the recent droughts (1976-1977 and 1987-1993) was always greater than 350 μ S/cm EC, except for one month in both 1989 and 1992. These monthly observations of EC at Collinsville indicate that during the recent dry periods (1976-1977 and 1987-1993), EC at Collinsville was higher than that during similar dry periods in the 1920's and 1930's. Enright and Culberson (2009) analyzed the trend in salinity variability at Collinsville from 1920-2006. They found increasing salinity variability in eleven of twelve months and attributed it to water operations. In seven months (January-May, September-October) the increasing trend was significant (p<0.05). Even in the six-year drought from 1928 to 1934, the Delta still freshened every winter (Figure 3-16). However, as shown in Figure 3-16, the Delta has not freshened during more recent droughts (1976-1977, 1987-1994, and 2007-2009). This indicates that the historical "flushing" of the Delta with fresh water is no longer occurring. This lack of flushing can also allow waste from urban and agricultural developments upstream of and within the Delta to accumulate. Contaminants and toxics have been identified as factors in the decline of the Delta ecosystem (Baxter *et al.* 2007). The data indicate the effect of managing to the X2 standard (implemented in 1995), as the salinity levels attained in the most recent drought are not as high as the 1976-77 and 1987-1992 droughts. Figure 3-16 - Average Winter salinity at Collinsville Annual average salinity during the winter (January through March) for water years 1927 to 2009. Bars are colored by water year type as defined by the Sacramento 40-30-30 index. Grey shading indicates multi-year droughts that include at least one critical water year. Figure 3-17 – Average Fall salinity at Collinsville Annual average salinity during the fall months (October through December) for water years 1920 to 2009. Bars are colored by water year type as defined by the Sacramento 40-30-30 index. Grey shading indicates multi-year droughts that include at least one critical water year. Figure 3-17 presents the variation in average fall salinity at Collinsville from 1920 to 2008 (October-December). Fall salinity is now high almost every year, while in the past, fall salinity was only high in dry and critical years. High salinity in the fall has been identified as a factor in the decline of the Delta ecosystem. Baxter *et al.* (2008) noted that "fall salinity has been relatively high during the POD years, with X2 positioned further [sic] upstream, despite moderate to high outflow conditions during the previous winter and spring of most years." #### **Conclusions** - In the 1920's and 1930's, the Delta freshened annually, even during droughts. In recent droughts, the Delta does not always freshen during the winter. - Prior to 1976, fall salinity was high only in relatively dry years. Recently, fall salinity is high almost every year. #### 3.3.5. Salinity at Mallard Slough A 1967 agreement between the Contra Costa Water District (CCWD) and the State of California requires the State to reimburse CCWD for the decrease in availability of usable river water, defined as water with less than 100 mg/L chlorides, at the Mallard Slough intake (CCWD, 1967). The 1967 agreement, and similar agreements between the State and other Delta water users, recognized the State Water Project (SWP) would increase salinity at Mallard Slough. The agreement defined a baseline of 142 days of usable water per year, based on the average number of days of usable water at the Mallard Slough intake from 1926-1967. Since 1967, the average number of days of usable water²¹ (for the period 1967-2005) has declined to 122, indicating a 20-day (14%) reduction in the number of days of high quality water at Mallard Slough since the completion of the SWP. The data are from the USBR-CVO record of EC at Pittsburg, approximately 2 km upstream of Mallard Slough from 1967-2005. Since this station is located upstream of Mallard Slough, the number of days of usable water at Mallard Slough since the SWP was built may be overestimated. # 4. Qualitative Observations of Historical Freshwater Flow and Salinity Conditions In this section, qualitative observations of salinity conditions in the western Delta and Suisun Bay from the lawsuit filed by the Town of Antioch in 1920 and from various literature reports are discussed to provide a perspective of the salinity conditions prevailing in the late 1800's and early 1900's. Qualitative observations from early explorers and settlers are discussed in Appendix E. ## 4.1. Town of Antioch Injunction on Upstream Diverters In 1920, the Town of Antioch filed a lawsuit (hereinafter referred to as the "Antioch Case") against upstream irrigation districts, alleging that upstream water diversions were causing increased salinity intrusion at Antioch. An overview of the Antioch Case is provided in Appendix E. The court decision, legal briefings, and petitions provide qualitative salinity observations from a number of witnesses. Although testimony in the Antioch Case is generally anecdotal, not quantitative, it provides a perspective of the salinity conditions prevailing in the early 1900's. Because the proceedings were adversarial in nature, this report focuses on the testimony of the upstream interests, who were trying to demonstrate that salinity intrusion was common near Antioch prior to their diverting water (prior to 1920). Consequently, the testimony may be biased in support of this "more saline" argument. The upstream interests in the Antioch Case provided information on the operation of pumping plants along the San Joaquin River at Antioch for domestic water supply and the quality of water obtained from the pumping plants, summarized in Table 4-1. Table 4-1 – Testimony regarding pumping plant operations and water quality in the 1920 Antioch Case | Time period of observation | Relevant information from the testimony | |----------------------------|--| | 1866-1878 | Mr. Dodge ran a pumping/delivery operation at Antioch Dodge pumped water into a small earthen reservoir at Antioch and then hauled the water to residents in a wagon. Cary Howard testified that while he was living in Antioch (1867-1876), the water became brackish one or two years in the fall, when they had to drive into the country to get water. This likely occurred during the drought of 1870-71. | | 1878-1880 | Mr. Dahnken bought and operated the Dodge operation Dahnken testified that the water became <u>brackish at high tide</u> every year in the late summer, and remained brackish at high tide until it rained "in the mountains." | | Time period of observation | Relevant information from the testimony | |----------------------------
--| | 1880-1903 | Belshaw Company provided water Dahnken testified that Belshaw Company <u>pumped only at low tide</u>. | | 1903-1920 | Municipal Plant William E. Meek (resident since 1910) testified the water is brackish at high tide every year, for some months in the year. James P. Taylor testified that for at least the last 5 years, insufficient storage required the plant to pump nearly 24 hours per day, regardless of tidal phase. Dr. J. W. DeWitt testified that during October of most years between 1897 and 1918, the water was too brackish to drink. Even when the city only pumped at low tide, the water was occasionally so brackish that it would be harmful to irrigate the lawns. | This testimony suggests that, in the late 1800's, water at Antioch was known to be brackish at high tide during certain time periods, but Antioch was apparently able to pump fresh water at low tide year-round. A possible exception was the fall season during a few dry years. Water at Antioch was apparently fresh at low tide until at least around 1915. At that time, due to increased demand and inadequate storage, the pumping plants started pumping continuously, regardless of tidal stage. The window of time each year when Antioch is able to pump fresh water from the river has been substantially reduced in the last 125 years. As shown in Appendix A, DWR (1960) estimated that water with a chloride concentration of 350 mg/L or less would be available about 85% of the time if there were no water management effects. DWR (1960) estimated that chloride concentrations at Antioch would be less than 350 mg/L about 80% of the time in 1900 and about 60% of the time by 1940. DWR also projected further deterioration of water quality by 1960 and beyond but did not include the effects of reservoir releases for salinity control. Observations of salinity at Antioch during recent years indicate that salinity is strongly dependent on ocean tides, and the diurnal range in salinity can be as much as the seasonal and annual ranges in salinity. This is discussed in more detail in Appendices D and E. For instance, salinity at high tide can be more than five times the salinity at low tide (Figures D-1, D-2, and D-3), and the salinity during the course of a single day may vary up to 6,000 $\mu\text{S/cm}$ EC (Figure D-1). Average daily salinity at low tide during the period of 1983-2002 exceeded 1,000 $\mu\text{S/cm}^{22}$ EC for about four and a half months of the year (Figure D-3). During the driest 5 years between 1983 and 2002, salinity at low tide was always greater than 1,000 $\mu\text{S/cm}$ EC (i.e., no fresh water was available at any time of day) for about eight months of the year. Fresh water is currently available at Antioch far less frequently than prior to the 1920's. $^{^{22}}$ The current water quality criterion for municipal and industrial use is 250 mg/L, equivalent to about 1,000 μ S/cm EC. Available data and observations indicate that, prior to about 1918, fresh water was available at least at low tide during almost the entire year, in all but a few dry years. Around 1918, an abrupt change to higher salinity occurred. Although a prolonged and severe drought also began about this time, salinity conditions at Antioch did not return to pre-drought levels when the drought ended, indicating that water management activities (increased upstream diversions and later storage of water in upstream reservoirs) were the primary causes of this increased salinity. ## 4.2. Reports on Historical Freshwater Extent Several literature reports discuss the spatial extent and duration of salinity conditions in the western Delta and Suisun Bay during the late 1800's and early 1900's. Salinity conditions at several key Delta locations are summarized below. Location: Western Delta Source(s): DPW (1931) Quotation: "The dry years of 1917 to 1919, combined with increased upstream irrigation diversions, especially for rice culture in the Sacramento Valley, had already given rise to invasions of salinity into the upper bay and lower delta channels of greater extent and magnitude than had ever been known before." (DPW, 1931, pg. 22) Quotation: "It is particularly important to note that the period 1917-1929 has been one of unusual dryness and subnormal stream flow and that this condition has been a most important contributing factor to the abnormal extent of saline invasion which has occurred during this same time." (DPW, 1931, pg. 66) Summary: Salinity intrusion into the Delta during the period 1917-1929 was much larger than experienced prior to that time. Location: Pittsburg, CA Source(s): Tolman and Poland (1935) and DPW (1931) Ouotation: "From 1880 to 1920, Pittsburg (formerly Black Diamond) obtained all or most of its domestic and municipal water supply from New York Slough offshore." (DPW, 1931, pg. 60) Quotation: "There was an inexhaustible supply of river water available in the New York Slough [near Pittsburg at the confluence of the Sacramento and San Joaquin Rivers], but in the summer of 1924 this river water showed a startling rise in salinity to 1,400 ppm of chlorine, the first time in many years that it had grown very brackish during the dry summer months." (Tolman and Poland, 1935, pg. 27) Summary: Prior to the 1920's, the water near the City of Pittsburg was sufficiently fresh for the City to obtain all or most of its fresh water directly from the river. Location: Antioch, CA Source(s): DPW (1931) Quotation: "From early days, Antioch has obtained all or most of its domestic and municipal water supply from the San Joaquin River immediately offshore from the city. This supply also has always been affected to some extent by saline invasion with the water becoming brackish during certain periods in the late summer and early fall months. However, conditions were fairly satisfactory in this respect until 1917, when the increased degree and duration of saline invasion began to result in the water becoming too brackish for domestic use during considerable periods in the summer and fall." (DPW, 1931, pg. 60) Summary: Until 1917, the City of Antioch obtained all or most of its freshwater supplies directly from the San Joaquin River. Salinity intrusion has prevented domestic use of water at the Antioch intake in summer and fall after 1917. Location: Benicia, CA (Suisun Bay) Source(s): Dillon (1980) and Cowell (1963) Quotation: "In 1889, an artificial lake was constructed. This reservoir, filled with fresh water from Suisun Bay during the spring runoff of the Sierra snow melt water ..." (Dillon, 1980, pg. 131) Quotation: "...in 1889, construction began on an artificial lake for the [Benicia] arsenal which would serve throughout its remaining history as a reservoir, being filled with fresh water pumped from Suisun Bay during spring runoffs of the Sacramento and San Joaquin Rivers which emptied into the bay a short distance north of the installation." (Cowell, 1963, pg. 31) Summary: In the late 19th Century, fresh water was available in the Suisun Bay and Carquinez Straits for use by the City of Benicia. The reported presence of relatively fresh water in the western Delta and the Suisun Bay during the late 1800's and early 1900's is consistent with the relatively fresh conditions observed in the paleoclimate records for this time period (Section 2.3) and the relatively wet conditions observed in the Sacramento River runoff and precipitation records (Section 3.1). Additional observations between 1775 and 1841 are included in Appendix E. These qualitative observations indicated the presence of "sweet" water near the confluence of the Sacramento and San Joaquin Rivers in the vicinity of Collinsville in August 1775 (a period of average or above-average Sacramento River flow), and September 1776 (a period of below-average Sacramento River flow). The presence of "very clear, fresh, sweet, and good" water was reported in April 1776 (a dry year). Historical observations from 1796 and August 1841 (dry periods) indicated salinity "far upstream" at high tide and the presence of brackish (undrinkable) water in Threemile Slough. Current salinity controls and regulations put brackish water (averaged over 14 days) near Jersey Point and Emmaton, each about 2.5 miles below Threemile Slough, on a regular basis annually. #### 5. Conclusions - 1. Measurements of ancient plant pollen, carbon isotope and tree ring data show that the Delta was predominately a freshwater marsh for the past 2,500 years, and that the Delta has become far more saline in the past 100 years because of human activity. Salinity intrusion during the last 100 years is comparable to the highest levels over the past 2,500 years. - 2. Human activities during the last 150 years, including channelization of the Delta, elimination of tidal marsh, construction of deep water ship channels, and diversions of water, have resulted in increased salinity levels in the Delta. Today, salinity typically intrudes 3 to 15 miles farther into the Delta than it did in the early 20th Century. - 3. Before the substantial increase in freshwater diversions in the 1940's, the Delta and Suisun Bay would freshen every winter, even during the extreme drought of the 1930's. However, that pattern has changed. During the most recent droughts (1976-1977, 1987-1994, and 2007-2009), the
Delta did not always freshen in winter. Without seasonal freshening, contaminants and toxics can accumulate in the system and young aquatic species do not experience the same fresh conditions in the spring that occurred naturally. - 4. While half of the past 25 years have been relatively wet, the fall salinity levels in 21 of those 25 years have resembled dry-year conditions. In terms of salinity, the Delta is now in a state of drought almost every fall because of human activity, including water diversions. - 5. Seasonal and inter-annual variation in salinity has also been changed; however, this change is the result of reduced freshwater flows into the Delta. At any given location in the western Delta and Suisun Bay, the percentage of the year when fresh water is present has been greatly reduced or even eliminated. - 6. The historical record and published studies show the Delta is far saltier now, even after the construction of reservoirs that have been used in part to meet State Water Resources Control Board water quality requirements in the Delta. Operation of reservoirs and water diversions for salinity management somewhat ameliorates the increased salinity intrusion, but the levels still exceed pre-1900 salinities. ## 6. Bibliography to the Main Report and the Appendices - Atwater, B. F., S. G. Conard, J. N. Dowden, C. W. Hedel, R. L. MacDonald and W. Savage. 1979. History, Landforms, and Vegetation of the Estuary's Tidal Marshes, in San Francisco Bay: The Urbanized Estuary, Editor T. J. Conomos, Pacific Division AAAS, San Francisco, California, 493 pp. See http://www.estuaryarchive.org/archive/conomos_1979/ - Baxter, R., R. Breuer, L. Brown, M. Chotkowski, F. Feyrer, M. Gingras, B. Herbold, A. Mueller-Solger, M. Nobriga, T. Sommer, and K. Souza. 2008. Pelagic Organism Decline Progress Report: 2007 Synthesis of Results, Interagency Ecological Program, January 2008, See http://www.science.calwater.ca.gov/pdf/workshops/POD/IEP_POD_2007_synthesis_report_031408.pdf - Burau, J.R., S.G. Monismith, M.T. Stacey, R.N. Oltmann, J.R. Lacy, and D.H. Schoellhamer. 1999. Recent research on the hydrodynamics of the Sacramento-San Joaquin River Delta and North San Francisco Bay. Interagency Ecological Program Newsletter, v. 11, no. 2, p. 45-55. http://sfbay.wr.usgs.gov/publications/pdf/burau_1999_delta.pdf - Byrne, R., B.L. Ingram, S. Starratt, F. Malamud-Roam, J.N. Collins, and M.E. Conrad. 2001. Carbon-isotope, diatom, and pollen evidence for late Holocene salinity change in a brackish marsh in the San Francisco Estuary. Quaternary Research 55:66-76. - Cappiella, K., C. Malzone, R. Smith, and B. Jaffe. 1999. Sedimentation and bathymetry changes in Suisun Bay: 1867-1990. Menlo Park, CA: US Geological Survey Open-File Report 99-563. See http://geopubs.wr.usgs.gov/open-file/of99-563/ - Cayan, D. R., P.D. Bromirski, K. Hayhoe, M. Tyree, M.D. Dettinger and R. E. Flick. 2008. Climate change projections of sea level extremes along the California coast, Climatic Change, Suppl (1), S57-S73. - Conomos T.J. 1979. San Francisco Bay: The Urbanized Estuary. Investigation into the natural history of the San Francisco Bay and Delta with reference to the influence of man. Pacific Division AAAS, San Francisco, California, 493 p. See http://www.estuaryarchive.org/archive/conomos_1979/ - Contra Costa Water District. 1967. Mallard Slough Unilateral Water Entitlement Agreement. Unpublished archive (available by request). - Cowell, J. W. 1963. History of Benicia Arsenal: Benicia, California: January 1851 December 1962. Berkeley, Howell-North Books. - Denton, R. A. 1993. "Accounting for antecedent conditions in seawater intrusion modeling applications for the San Francisco Bay-Delta". ASCE Journal of Hydraulic Engineering, Vol. 1. pp. 448-453. - Denton, R. A. and G. D. Sullivan. 1993. "Antecedent Flow-Salinity Relations: Applications to Delta Planning Models." Contra Costa Water District. December 1993. - [DPW] Department of Public Works. 1923. Flow in California Streams Appendix A to Report to the Legislature of 1923 on the Water Resources of California. Bulletin No. 5. State of California, Department of Public Works, Division of Engineering and Irrigation. See http://www.archive.org/details/flowincalifornia00calirich - [DPW] Department of Public Works. 1931. Variation and Control of Salinity in Sacramento-San Joaquin Delta and Upper San Francisco Bay. Bulletin No. 27. State of California, Department of Public Works, Division of Engineering and Irrigation. See http://www.archive.org/details/variationcontrol27calirich - [DWR] Department of Water Resources. 1960. Delta Water Facilities. Bulletin No. 76. State of California. See http://www.deltacorridors.com/uploads/Bulletin_No. 76_Delta_Water_Facilities-Color.pdf - [DWR] Department of Water Resources. 1962. Salinity Incursion and Water Resources. Appendix to Bulletin No. 76. The Resources Agency of California. See http://www.archive.org/details/deltawaterrequir761962calirich - [DWR] Department of Water Resources. 1986. Salinity unit conversion equations. State of California Memorandum dated June 24, 1986, Kamyar Guivetchi to Peter Lee, Dick Kretsinger, and James McDaniel, 29 pp. - [DWR] Department of Water Resources. 1987. California Central Valley Unimpaired Flow Data. State of California. The Resources Agency. Division of Planning. - [DWR] Department of Water Resources, Division of Dam Safety. 1993. Dams within the jurisdiction of the State of California. Database downloaded from the California Spatial Information Library, February 2007 (no longer available online). See http://www.water.ca.gov/damsafety/damlisting/index.cfm - [DWR] Department of Water Resources. 1994. California Water Plan Update. Bulletin 160-93, California Department of Water Resources, Sacramento, CA. - [DWR] Department of Water Resources. 1995. Sacramento-San Joaquin Delta Atlas. State of California. See http://baydeltaoffice.water.ca.gov/DeltaAtlas/index.cfm - [DWR] Department of Water Resources. 2006. Progress on incorporating climate change into management of California's water resources. Technical Memorandum Report. State of California. July 2006. See http://baydeltaoffice.water.ca.gov/climatechange/DWRClimateChangeJuly06_update8-2-07.pdf - [DWR] Department of Water Resources. 2007. Sacramento-San Joaquin Delta Overview. State of California. See http://baydeltaoffice.water.ca.gov/sdb/tbp/deltaoverview/index.cfm - [DWR] Department of Water Resources. 2009. California Cooperative Snow Surveys. Chronological Reconstructed Sacramento and San Joaquin Valley. Water Year Hydrologic Classification Indices. Based on measured unimpaired runoff (in million acre-feet), subject to revision. State of California. Accessed on December 12, 2009 at: http://cdec.water.ca.gov/cgi-progs/iodir/wsihist - Dettinger, M. D. 2005. Changes in Streamflow Timing in the Western United States in Recent Decades, U.S. Geological Survey, Fact Sheet 2005-3018. - Dillon, R. 1980. Great Expectations: The Story of Benicia, California, Fresno, California. 241 pp. - Earle, C. J. 1993. Asynchronous Droughts in California Streamflow as Reconstructed from Tree Rings, Quaternary Research, 39: 290-299 - Ejeta, M. 2009. Unimpaired NDO data provided as an update to the February 1987 DWR publication "California Central Valley Unimpaired Flow Data". June 8, 2009. - Enright, C. 2004. "Long-Term Trends and Variability of Suisun Marsh Salinity" presented at the San Francisco Bay-Delta Science Consortium Suisun Marsh Workshop, March 1-2, 2004. See http://www.baydeltaconsortium.org/education/workshops/presentations - Enright, C. and S.D. Culberson. 2009. Salinity trends, variability, and control in the northern reach of the San Francisco Estuary. San Francisco Estuary and Watershed Science, Volume 7, Issue 2, CALFED Bay-Delta Authority, December 2009. http://www.escholarship.org/uc/item/0d52737t - Fox, J. P. 1987a. Salinity and Temperature Variations in San Francisco Bay. State Water Contractors Exhibit Number 266. Bay Delta Hearings, Sacramento, CA. See http://oskicat.berkeley.edu/record=b11838183~S51 - Fox, J. P. 1987b. Freshwater Inflow to San Francisco Bay Under Natural Conditions. State Water Contractors Exhibit Number 262. Bay Delta Hearings, Sacramento, CA. See http://oskicat.berkeley.edu/record=b11838181~S51 - Goman, M. and L. Wells. 2000. Trends in river flow affecting the northeastern reach of the San Francisco Bay estuary over the past 7000 years. Quaternary Research 54:206-217 - Goman, M., F. Malamud-Roam and B. L. Ingram. 2008. Holocene Environmental History and Evolution of a Tidal Salt Marsh in San Francisco Bay, California. Journal of Coastal Research, 24(5), 1126-1137. - Graumlich, L. 1987. Precipitation variation in the Pacific Northwest (1675-1975) as reconstructed tree rings. Annals of the Association of American Geographers, 77(1):19-29 - Hulaniski, F. J. 1917. The History of Contra Costa County,
California. Berkeley, California. - Ingram, B. L. and D. J. DePaolo. 1993. A 4,300 year strontium isotope record of estuarine paleosalinity in San Francisco Bay, California. Earth and Planetary Science Letters, 119: 103-119. - Ingram, B. L., J. C. Ingle and M. E. Conrad. 1996a. Stable isotope record of late Holocene salinity and river discharge in San Francisco Bay, California. Earth and Planetary Science Letters, 141: 237-247 - Ingram, B. L., J. C. Ingle, and M. E. Conrad. 1996b. A 2000 yr record of Sacramento San Joaquin River inflow to San Francisco Bay Estuary, California, Geology, 24, 331–334. - Interagency Ecological Program (IEP). 2007. HEC-DSS Time-Series Databases. Retrieved September 4, 2007 from http://www.iep.ca.gov/dss/all/ - Jackson, W. T., and A. M. Paterson. 1977. "The Sacramento-San Joaquin Delta: The Evolution and Implementation of Water Policy: An Historical Perspective", California Water Resources Center, Technical Completion Report #163, June 1977, University of California, Davis. See http://repositories.edlib.org/wrc/ter/jackson/ - Jassby, A. D., W. J. Kimmerer, S. G. Monismith, C. Armor, J. E. Cloern, T. M. Powell, J. R. Schubel and T. J. Vendlinski. 1995. Isohaline position as a habitat indicator for estuarine populations. Ecological Applications, 5: 272-289. - Kimmerer, W. and S. Monismith. 1992. An Estimate of the Historical Position of 2PPT Salinity in the San Francisco Bay Estuary. Issue Paper prepared for the fourth technical workshop on salinity, flows, and living resources of the San Francisco Bay/Delta Estuary. August 1992. Available online at: http://www.calwater.ca.gov/Admin_Record/C-047938.pdf - Knowles, N., D. Cayan, D. H. Peterson, and R. J. Uncles. 1998. Simulated effects of delta outflow on the Bay: 1998 compared to other years, Interagency Ecological Program Newsletter. 11, pp. 29–31, Dept. of Water Resources Environmental Services Office, Sacramento. (Available at http://iep.water.ca.gov/report/newsletter/) - Knowles, N. 2000. Modeling the Hydroclimate of the San Francisco Bay-Delta Estuary and Watershed. Dissertation. University of California, San Diego. Available online at: http://sfbay.wr.usgs.gov/publications/pdf/knowles-2000-phd-dissertation.pdf - Lund, J., E. Hanak, W. Fleenor, R. Howitt, J. Mount, and P. Moyle. 2007. Envisioning Futures for the Sacramento-San Joaquin Delta. Public Policy Institute of California. San Francisco, California. http://www.ppic.org/content/pubs/report/R_207JLChapter2R.pdf - Malamud-Roam, F. and B.L. Ingram. 2004. Late Holocene δ13C and pollen records of paleosalinity from tidal marshes in the San Francisco Bay estuary, California. Quaternary Research 62:134-145. - Malamud-Roam, F., M. Dettinger, B.L. Ingram, M.K. Hughes, and J.L. Florsheim. 2007. Holocene climates and connections between the San Francisco Bay Estuary and its watershed: a review. San Francisco Estuary and Watershed Science Vol. 5, Issue 1 (February), Article 3. - Malamud-Roam, F.P., Ingram, B.L., Hughes, M., and J.L. Florsheim. 2006. Holocene paleoclimate records from a large California estuarine system and its watershed region: linking watershed climate and bay conditions. Quaternary Science Reviews 25:1570-1598. - May, M.D. 1999. Vegetation and salinity changes over the last 2000 years at two islands in the northern San Francisco Estuary, California. Master of Arts Thesis, (University of California, Berkeley), Spring 1999 - Means, T.H. 1928. Salt Water Problem, San Francisco Bay and Delta of Sacramento and San Joaquin Rivers, April 1928. - Meko, D. M., M. D. Therrell, C. H. Baisan and M. K. Hughes. 2001a. Sacramento River Flow Reconstructed to A.D. 869 from Tree Rings. Journal of the American Water Resources Association. 37(4):1029-1039. - Meko, D. M., M. D. Therrell, C. H. Baisan and M. K. Hughes. 2001b, Sacramento River Annual Flow Reconstruction. International Tree-Ring Data Bank. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-081. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA. See ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/california/sacramento_flow.txt - Menne, M. J., C. N. Williams, Jr., and R. S. Vose, 2009. United States Historical Climatology Network (USHCN) Version 2 Serial Monthly Dataset. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Last updated June 2009. See http://cdiac.ornl.gov/epubs/ndp/ushcn/access.html - Monismith S. 1998. X2 workshop notes. IEP Newsletter 11(4):6-14. Available at: http://www.iep.water.ca.gov/report/newsletter - Mote, P. W., A. F. Hamlet, M. P. Clark and D. P. Lettenmaier. 2005. Declining mountain snowpack in western north America. Bulletin of the American Meteorological Society 86(1): 39-49. - Nichols F. H., Cloern J. E., Luoma S. N. and Peterson D. H. 1986. The modification of an estuary. Science 231:567-573. - Oltmann, R.N., and M.R. Simpson. 1997. Measurement of tidal flows in the Sacramento-San Joaquin Delta, California. Poster. USGS San Francisco Bay and Delta Ecosystem Forum. U.S. Geological Survey, Sacramento, California, March 1997. http://sfbay.wr.usgs.gov/watershed/tidal_flow/images/miniposter.pdf February 12, 2010 Exhibit CCWD-6 53